COLUMN (C-7):-

Assume column size = 10″ x 15″ = 150 sq. inch

Load from F. B – A2,A3 =  = 15.19 kip

Load from F. B – A3,A4 =  = 8.25 kip

Load from F. B – A3,D3 =  = 15.95 kip

Self weight of Column =  x 150 x (10 – ) = 1.40 k

Factored load                 = 1.2 x 1.40 + 15.19 + 8.25 + 15.95

= 41.07 kip

Total column load for 6 – stored = 6 x 41.07 = 246.42 kip

b) Check for size:-

Pu = 243.11 (kip) (story -1)                        / ρg = 0.02

Pu  = Ag [ .85f′c (1- ρg) + ρgfy]

Or, 246.42 = 0.80 x 0.65 x Ag [0.85 x 3 (1- 0.02) + .02 x 40]

Ag = 143.64 inch

Size of column = 10″ x 15″

Provided size = 150 in

c) Calculation of steel:-

Pu =  [0.85 x f′c (Ag – Ast) + Ast fy]

Or, 150 = .80 x .65 x [.85 x 3 x (150- Ast) + Ast x 40]

Ast = 2.27 in

Use # 7 bars, Ap = 2.40 in

Tie bar:-

Use # 3 bar @ as Tie

S = 16 x Main bar dia = 16 x  = 14″ c / c

S = 48 x Tie bar dia = 48 x  = 18″ c / c

S = Minimum width of column = 10″ c /c

We use # 3 bar @ 10″ c / c

COLUMN (C-8):-

Assume column size = 10″ x 24″

Load from F. B – B2,B3 =  = 24.08 kip

Load from F. B – B3,B4 =  = 13.08 kip

Load from F. B – B3,C3 =  = 8.11 kip

Load from F. B – D3,B3 =  = 3.12 kip

Self weight of Column =  x 150 x (10 – ) = 2.25 k

Factored load                 = 24.08 + 13.08 + 8.11 + 1.2 x 2.25+20 k

= 67.97 kip

Total column load for 6 – story = 67.97 x 6 = 407.82 kip

b) Check for size:-

Pu = 407.82 (kip)

Pu  = Ag [ .85f’c (1- ρg) + ρgfy]

Or, 407.82  = 0.80 x 0.65 x Ag [0.85 x 3 (1- .02) + .02 x 40]

Ag = 237.80 in

Size of column = 10″ x 24″

Provided size = 240 in

So, Ok

c) Calculation of steel:-

Pu =  [0.85 f′c (Ag – Ast) + Ast fy]

Or, 407.82 = .80 x .65 x [.85 x 3 x (240- Ast) + Ast x 40]

Ast = 4.59 in

Use 8 # 7 bars st, Ap = 4.80 in

Tie bar:

Use # 3 bar  as Tie

S = 16 x  = 10″ c / c

S = 48 x  = 18″ c / c

S = Minimum width of column = 10″ c / c

We use # 3 bar @ 10″ c / c

COLUMN (C-9):-

Assume column size = 10″ x 15″ = 150 sq. inch

Load from F. B – B3, C3 =  = 7.81 kip

Load from F. B – C2, C3 =  = 6.81 kip

Load from F. B – C3, C4 =  = 3.06 kip

Load from stair Beam =  = 19.38 kip

Self weight of Column =  x 150 x (10 – )/1000 = 1.97 k

Factored load                 = 1.2 x 1.97 + 7.81 + 3.06 + 19.38 +20

= 59.42 kip

Total column load for 6. story = 6 x 59.42= 356.54 kip

b) Check for size:-

Pu = 116.232 kip

Pu  = Ag [ .85f′c (1- ρg) + ρgfy]

Or, 356.54  = 0.80 x .65 x Ag [0.85 x 3 (1- .02) + .02 x 40]

Ag = 207.83 in

Size of column = 10″ x 21″

Provide, Ag = 10″ x 21″= 210 in

So,  ok.

c) Calculation of steel:-

Pu =  [0.85 f′c (Ag – Ast) + Ast fy]

Or, 356.54  = .80 x .65 x [.85 x 3 x (210- Ast) + Ast x 40]

Ast = 4.00 in

Use 10 # 6 bar straight.

Tie bar:-

Use # 3 bar  as Tie

S = 16 x  = 12″ c / c

S = 48 x  = 18″ c / c

S = Minimum width of column = 10″ c / c

We use # 3 bar @ 10″ c / c

Check for lateral tie:-

S =  = 4.75″ < 6″

So, Ok

No latered ties are required.

COLUMN (C-10):-

Assume column size = 10″ x 15″ = 150 sq. inch

Load from F. B – A3, D3 =  = 15.95 kip

Load from F. B – D3, D4 =  = 9.29 kip

Load from F. B – D3, B3 =  = 13.08 kip

Self weight of Column = 150 x  x 9′ = 1.41 k

Factored load                 = 15.95 + 9.29 + 13.08 + 1.41 x1.2

= 40.00 kip

Total column load for 6- story = 6 x 40 = 240 kip

b) Check for size:-

Pu = 240 kip (Story -1)

Pu  = Ag [ .85 x f′c (1- ρg) + ρg fy]

Or, 240  = .80 x .65 x Ag [.85 x 3 (1- 0.02) + .02 x 40]

Ag = 139.90 in

Size of column = 10″ x 14″

Provided size  = 10″ x 15″= 150 Sq. inch.

Ok.

c) Calculation of steel:-

Pu =  [0.85 f′c (Ag – Ast) + Ast fy]

Or, 240  = .80 x 0.65 [.85 x 3 (150- Ast) + Ast x 40]

Ast = 2.11 in

Use 4 # 7 bar st, Ap = 2.40in

Tie bar:

Use # 3 bar  as Tie

S = 16 x  = 14″ c / c

S = 48 x  = 18″ c / c

S = Minimum width of column = 10″ c / c

We use # 3 bar @ 10″ c / c

Table:- 4.4.   Details of sectional dimensions and reinforcement arrangement of all Columns (C – 1 ~ C – 10):

 Columngroup Numberof Column ColumnSize Columnload Area of steel req. (sq.inch) QuantityOf bars Tie barsspacing Pu (kip) Ast Main bars Use # 3 bars C – 1 02 10″ X 30″ 516.34 6.10 14 # 6 10″ C/c C – 2 02 10″ X 18″ 308.96 3.60 8 # 6 10″ C/c C  – 3 02 10″ X 18″ 289.77 2.52 6 # 6 10″ C/c C – 4 02 10″ X 20″ 342 3.95 10 # 6 10″ C/c C – 5 02 10″ X 12″ 189 1.53 6 # 5 10″ C/c C – 6 02 10″ X 12″ 152.5 0.34 4 # 5 10″ C/c C – 7 02 10″ X 15″ 246.42 2.27 4 # 7 10″ C/c C – 8 02 10″ X 24″ 407.82 4.59 8 # 7 10″ C/c C – 9 02 10″ X 21″ 356.54 4.00 10 # 6 10″ C/c C- 10 02 10″ X 15″ 240.00 2.11 4 # 7 10″ C/c  Design Data:–

Materials:-

Fy = 40 ksi

f′c = 3 ksi

wc = 150 pcf

w brick = 120 pcf

Thickness of wall on GB = 5″

Clear cover                       = 3″

Size  = 10″ x 15″

Effective depth (d) = 15-3 = 12 inch

Self weight of beam GB-1 =  x 150 = 156.25 Ib/ft

All main wall weight          =  ( 10- )x120 = 430.00 Ib/ft

Factored load GB-1            = 1.2 DL    = 1.2 x 606.25

= 727.5 Ib/ft

= 0.73 k/ft

b) Moment Calculation and ‘d’ check:-

(-) Ve moment at Ext. support =  = 7.04 k-ft

(+) Ve moment at Mid span     =  = 8.04 k-ft

(-) Ve moment at Int. support =  = 11.26 k-ft

Mu = 11.26 k-ft

b = 0.85ß1 x  x

= 0.85 x 0.85 x x

= 0.037

max = 0.75 b = 0.75 x 0.037 = 0.028

Mu       = bd  fy (1-0.59  x

Or 11.26  x 12 = 0.9 x 0.028×12 x d x 40 x (1-0.59 x .028 x

= 3.78″ < 12″

So, ok

c) Reinforcement Calculation:

Mid span steel:-

= = 62.03 < 200 psi

min = =  = 0.005

min = =  = 0.0041

As = bd = 0.005x 12 x 12 = 0.72 inch

Use 2 # 6  hanger bar.

Steel for Int. Support:-

= = 86.88 psi < 200 psi

min  = 0.005

min = 0.0041

As = bd = 0.005x 12 x 12 = 0.72 inch

Use 2 # 6 hanger bar.

Steel for Ext. Support:-

= = 54.32 psi < 200 psi

As = bd = 0.005x 12 x 12 = 0.72 inch

Use 2 # 6  hanger bar.

d) Stirrup design:-

Vv = 1.15 x  = 4.86 K

Vu = 4.86 – ( ) x.73 = 4.13 k

Vc = 2 bw d = 2  x 10 x 12 = 13.14 k

Shear strength of concrete,

Vc = .75 x 13.14 = 9.86 K

Since, Vc > Vd; no shear reinforcement is required.

Use # 3 bar @  =  = 6″ c / c throughout beam length.

Size  = 12″ x 15″

Effective depth, (d) = 15-3 = 12 inch

Self weight of beam GB-2 =  x 150 = 156.25 Ib/ft

All main wall weight          =  ( 10- ) x120 = 450.00 Ib/ft

Factored load GB-2            = 1.2 DL    = 1.2 x 606.25

= 727.5 Ib/ft

= 0.73 k/ft

b) Moment Calculation and d check:-

(-) Ve moment at Ext. support =  = 11.43 k-ft

(+) Ve moment at Mid span     =  = 13.07k/ft

(-) Ve moment at Int. support =  = 18.79 k-ft

Now, Mu = 18.79 k-ft

b = .85x 1   x  x

= 0.85 x 0.85 x x

= 0.037

max = 0.75 x 0.037  = 0.028

Mu       = bd  fy (1-0.59  x

Or 18.79  x 12 = 0.9 x .028×12 x d x 40 x (1-0.59 x .028 x

= 4.88″ < 12″

So, ok

c) Reinforcement Calculation:

Mid span steel:-

= = 100.84 < 200 psi

min = =  = 0.005

min = =  = 0.0041

As = bd = .005x 12 x 12 = 0.72

Use 2 # 6 bar hanger

Steel for Int. Support:-

= = 144.98 psi < 200 psi

min  = 0.005

As =  0.005x 12 x 12 = 0.72 inch

Use 2 # 6 bar hanger.

Steel for Ext. Support:-

= = 88.19 psi < 200 psi

min  = 0.005

As = 0.005x 12 x 12 = 0.72 inch

Use 2 # 6  bar hanger .

d) Stirrup design:-

Vu = 1.15 x  = 6.29 K

Vu = 6.29 – ( ) x .73 = 5.57 k

Vc = 2 bw d = 2  x 10 x 12 = 13.14 k

Shear strength of concrete,

Vc = 0.75 x 13.14 = 9.86 K

Since, Vc > Vd; no shear reinforcement is required.

Use # 3 bar @  =  = 6″ c / c throughout beam length. v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}

Normal
0

false
false
false

EN-US
X-NONE
X-NONE

/* Style Definitions */
table.MsoNormalTable
{mso-style-name:”Table Normal”;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-qformat:yes;
mso-style-parent:””;
mso-para-margin:0in;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:”Calibri”,”sans-serif”;}
table.MsoTableGrid
{mso-style-name:”Table Grid”;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-priority:59;
mso-style-unhide:no;
border:solid windowtext 1.0pt;
mso-border-alt:solid windowtext .5pt;
mso-border-insideh:.5pt solid windowtext;
mso-border-insidev:.5pt solid windowtext;
mso-para-margin:0in;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:”Times New Roman”,”serif”;
mso-fareast-font-family:”Times New Roman”;}

Figure Reinfrocement Grade Beam ( GB-2 )

Table : Details of sectional dimensions and reinforcement arrangement of all grade beams ( GB- 1  GB – 2).

 Grade Beam Group Grade BeamSize Moment (Kip-ft) Area of steel req. (Sq. inch) Quantity of bars Stirrups (Spacing” C/c) At Ext.M-Ve At Mid M + Ve At Int.M-Ve At Ext.As-Ve At midAs+Ve At Int.M-Ve Main bars ExtraTop/bottom GB – 1 10″ x 15″ 7.04 8.04 11.26 0.72 0.72 0.72 At Ext, Suppt:2 # 6 – @ 6″ C/c At Mid, Span:2 # 6 – @ 6″ C/c At Int, Suppt:2 # 6 – @ 6″ C/c GB – 2 10″ x 15″ 11.43 13.07 18.79 0.72 0.72 0.72 At Ext, Suppt:2 # 6 – @ 6″ C/c At Mid, Span:2 # 6 – @ 6″ C/c At Int, Suppt:2 # 6 – @ 6″ C/c Some are parts:

Analysis and Design of Building Components (Part 1)

Analysis and Design of Building Components (Part 2)

Analysis and Design of Building Components (Part 3)